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Evolution of escape processes with a time-varying load
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We study an escape process of a noisy particle with a time varying load. We present an effective nonper-
turbative method which works even when the time varying load amplitude is comparable to other parameters.
It is based on the idea that for every instant of time, we knowdtasiadiabaticeigenspectrum and the
guasiadiabatic eigenfunctions of the instantaneous system. We show that when two time-varying quasiadiabatic
eigenvalues in the spectrum get close to each other, the amplitudes of the quasiadiabatic eigenfuntions show an
abrupt change; therefore, the escape rate is highly affected.
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I. INTRODUCTION Our specific problem here is a random walker carrying a
time-dependent load. We are interested in the escape time for
Escape phenomena from a given prescribed potential ahe walker to reach the poirt=L when it starts its motion at
between stable states induced by intrinsic or external fluctuac=a. Therefore, we have one reflecting boundary condition
tions have been well studied using stochastic processestx=a, and one absorbing boundary conditiorxatL. The
Kramers' original work shows a characteristic time scale ofioad acts as a retarding force against the motion toward the
transition between two stable stafds-3]. It is the strength  absorbing boundary.
of fluctuation and the shape of the potential which determine |n the case where the load is constant in time, Fgt)
the escape rate. =F,, this model has been used recently to understand the
If the escape process involves a time-dependent potentiahotion of the kinesin molecule moving on a microtubf#g
the escape rate will be affected by the time-dependent poteikinesin acts as a kind of biological motor, and this model
tial along with the fluctuation strength. In this paper we con-can explain the speed of the motor motion as a function of
sider a random walker in a time-dependent potential on goad. The escape time distribution for the motor to move a
one-dimensional lineg,L). The Langevin equation in the discrete step was expressed as a superposition of eigenfunc-
overdamped case is tions and eigenvalues of the backward Fokker-Planck opera-
tor. The escape time distribution combined with various
_dU(xt) chemical reaction rates gives an overall velocity of the mo-
T X (), @ tor. We found out that the time scale of the diffusive term
from the load is well separated from the time scale from the
whereF (t) = — dU(x,t)/dx is a time varying force, angris  fluctuations.
a Gaussian white fluctuation force. has a zero mean and  If the load depends on time, it necessarily introduces an-

correlation strengti, other time scale, such as the period of sinusoidal driving,
decaying rate of load, etc. These rates affect the escape rates.
(y(t))=0, The analytic solution for the time-dependent escape process

is hard to obtain, and the perturbative method would be

(y(t)y(t"))y=2Ds(t—t"). 2 available only when the amplitude of time varying param-

eters are small enough compared to other exisiting ones. In

The Fokker-PlanckFP) equation for the probability den- this paper we present a nonperturbative method when the
sity of the particle, which is a description equivalent to theinstantaneous eigenvalugguasiadiabatic eigenvalugsof

Langevin equation, can be written the Fokker-Planck operator at every instant of time are
known. This method was originally conceived to solve time-
ap(x,t) AF(x0p(xt)] p(x,1) dependent problems in quantum systems, where the time

(3)  varying quasiadiabatic eigenvalue spectrum of the Hamil-
tonian shows nontrivial behavigg]. For a frozen value of
the external potential, the Hamiltonian has an adiabatic spec-

We also definel as the forward Fokker-Planck operator trum parametrized by the frozen external potential. When

at ax 92

such that two levels in the eigenvalue spectrum approach each other
closely (however, they never cross each other; avoided level
d  JF(x,t)] crossingg the system behaves extremely nonadiabatically

‘CF:Dﬁ_Tv with level mixings.

Even though this method was used to describe the effect
of slowly varying parameters in the quantum systems, the
ap(x.t) = Lep(x.t) 4) solution turned out to be applicable to a wide range of time

ot FPOGE. scales. We choose a time scale for a time varying parameter
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in such a way that the unperturbed escape rate and the tinsegeneral solution can be written as
scale for a time varying parameter are in the same order of
time scales. By doing so, the interplay of these effects will be

©

pronounced_ p(Xat):nZo an(t)(;bn(x)a (10)
For escape processes, it is more convenient to use the
backward FP equation where a,,(t) are the time-dependent coefficients. The ortho-
normality condition for the eigenfunctiong(x)’s of this op-
ap(x,t) - d 5 ?p(x,t) erator is
ot - (X!t) IX p(xvt)+ ﬂXz ’ (5) )
_ ($n(X), bm(X)) = f $n(X) () ©(X)AX= Sy, (1)
and the backward FP operator, defined as a
P P where w(X) is the weight function according to the Sturm-
Lg=D—+F(x,t)—, Liouville theory. During the evolution, we will expand the
x> 2 solution in the same basis set. If we combine Ed) with
Eqg. (8), and Eq.(9), we get
ap(x,t)
o~ Lap(x.1). ()

d oo o]
ﬁ( 2 an(twn(x)) == 2 Mpaan(0)bn(x)
In Sec. Il we present two methods using different repre-

sentations, both giving the same solution for the FP equation. “

In one picture, we expand the general solution in the fixed +F1(X,t)(9x2 an(t) dn(X).
eigenfunctions, and in the other, the general solution is ex- n=0

panded in the instantaneous eigenfunctions in timeasia- (12

diabatic methog . .
In Sec. lll we show a specific example of a load, which Using the orthonormality from Eq(11) and the fact that

varies sinusoidally in time in both pictures. We show the®n(X) are not time dependent, we finally obtain a set of
time-varying quasieigenvalue spectrum. When the twdrdinary differential equations fokn(t), i.e.,
guasiadiabatic-eigenvalue levels approach each other, it will

affect the evolution equation, and thus the escape rate. ()= = Amam()+ > (bm,F1(X,)dydn) an(t).

In Sec. IV, we briefly show how the same problem can be n
treated by a perturbative method, and compare the results (13
with the previous methods.

In Sec. V, by comparing the previous results with numeri-
cal simulation, we demonstrate that when the load amplitud
becomes comparable to other existing parameters, the
nonperturbative pictures show a far better result than the per-
turbative one.

There is no restriction folf=,(x,t)| in terms of other param-
eters here. We call this methdte direct time-dependent
ﬁwethod and we only have to know the eigenspectrum for the
1(X,t)=0 case.

As an alternative perspective, for a given instant of time
t=t’, the forceF(t) is given byf’. Let us assume that with

this frozen value, we can obtain a set of eigenvalues of

II. DIRECT TIME-DEPENDENT PICTURE VERSUS
for the operator

QUASIADIABATIC PICTURE

ime- i N 0 J
If the time-dependent load can be written as [’:f,5+ o, »
F(x,t)=Fo+Fi(x,t), (7) ax
the backward FP operator also can be split into a stationarf/md we have
part and a time-dependent part, such that ap(x.0) B
== Ap(x,t). (15)
2 P ot
stationary__ 4 v
Fe P ax? Fodx: A general solution will be written as
. J o ~ _
£ time dependent. F1(X,t)5. (8) p(x,t)=nzO an(t)dn(x,1), (16)

If we can obtain a set of eigenvalugs and eigenfunctions wherea,(t) are the time-dependent coefficients. Note that

¢ to the stationary part of the backward FP operator, i.e., ‘¢ (x,t)=¢,(x,f';t) are also time varying in time. In this
stationary picture we expand a general solution in time varying quasia-
Ly $=—\¢, (9 diabatic eigenfunctions, and the dynamics can be observed
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from the eigenfunctions at that instant. This picture can have In this section the random walker walks along a 1D seg-
an advantage when we want to view the dynamics from thenent with a loadretarding force and periodic forcing. We

moving eigenstates. If we take the derivative of Ef), we  have one absorbing and one reflecting boundary condition.

get Without a time-dependent oscillating part, the load in our
case would always act against the forward motion. With the
(?tz (D) B0t = D (D B0t oscillating part of the load, the load helps the motion half of

n=0 n=0 the period and deters the motion the other half of the period.
A similar model was used to examine the effect of the time

~ ~ ;o dff varying current on the histogram of spikings in the excitable
2, () ba(x, 1) systemd6]
1 We first consider a constant loa¢dlF,. The backward FP
17) operator is written

We call this method the quasiadiabatic method. The relations Lad=—\o
for the amplitudes from the two different pictures are given B '
as 2
Lg=D L F i (23
~ ~ B 2 " Opxe
am(t)= < %(xm)’@ an¢>n<x>>, o

The corresponding boundary conditions are

n

am(t)=<¢m(x) > an(t)an(xyt)>- (18 P(X,t)|x-1=0 (24)

_ for the absorbing boundary condition, and
Since the random walker starts outxat a, normally the

initial distribution function is sharply peaked aroume-a, xP(X,t)|[x=a=0 (29
such as a delta function. We therefore @etthe direct time- ) - .
dependent method for the reflecting boundary condition. The solutigi(x,t)

will be of a form with exp&ht)¢,(X). With the two bound-
ary conditions fox=a, x=L, eigenfunctionsp,(x) are ob-

p(x,t)= nzo exp(—Nnt) dn(X) Pn(Xo). (19 tained such that
(A finite number of eigenfunctions with the corresponding ¢n(x)=ex;{ - E)bn(x), (26)
expansion coefficients give only an approximatjoRor t 2D
=0, the above distribution reduces to .
with
-0 = — _ 2D
p(x,t—O)—g ®n(X) dn(Xo) = 8(X—Xo). (20) ba(x)=siMk,(x—L)] for —>1, (27)

FolL

The probability that the particle stays [m,b] when the gng
initial distribution is 5(x—Xg); G(Xg,t) is to be calculated

as 2D
sinfk,(x—L)] for —<1,
- Fol
G(Xo,t)= f bn(X)dXoeXH — Aol b(X).  (21) by(x)= X 2D (28)
0 1- T for _FOL =1

The escape rate distribution is defined as
A set ofk,, is to be obtained from a transcendental equa-
Po(t)=—;G(Xg,t). (22)  tion

2D 2D
lll. PERIODIC DRIVING tan(k,L)= F_Ol_k“L for m>1 (29)
The effect of a time-dependent periodic forcing on a dif-
fusion process with a force-free potential in two absorbingand tanhi;L)=(2D/FgL)k;L for (2D/FyL)<1, k;=0 for
boundary conditions was analyzed in the 198Q In Ref. 2D/FyL=1. Eigenvalues\, satisfy the relation depending
[8], a simple random walkefwithout any particular poten- on the conditions
tial) under a periodic forcing diffuses along a one-
dimensional(1D) line segment. It is shown that there is a FS 2 2D
resonance frequency which minimizes the mean first passage )‘“:E+ Dk, for q>1’ (30)
time (MFPT), and at this resonance frequency, it has a linear
dependence on the lattice sikze and
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F2 , 2D As in quantum system§9], we can also calculate the

D Dk;, for ﬁ<1’ qua_sieigenvalue spectrum as we move along time. A_fuII set
Ny(X)= ) 0 (31) of eigenvalue levels are calculated from E@9), (30). With

Fo 2D two levels only, say the two lowest levels, we can set up a

2D for qzl- matrix for f' = A = — esin(wt) in the basis off’=0

The orthonormality condition for this specific problem is

L Fo
(Pn(X), dm(X)) = L d>n(X)d>m(x)eXp< - 3x>dx= Sam-

M= A(E|0ér)  —A(E1]0xép)
—A(&|0kE1) N A& 0xER) |

If we diagonalize this matrix, we obtain a quadratic equation

(39

(32) which will give us two quasiadiabatic eigenvalues, i.e.,
Here, we have the weight function NP = (N1t N o= A(&]0é1) = A(Eol uo) )N+ (=N
;{ Fo +A(E1]0xE)) (= No+ A(&|04E2))
X)=exp —-—=X|dx. 33
“nX) D . +A(&] 9yE2)(€ol dxr)=0. (40

If we apply a pe_ri_odic perturbation, the backward FP I\V. ADIABATIC METHOD
equation has an additional term such that

A perturbative method assumes a solution

ap .
Ez[—Fo—esm(wH(ﬁo)]aprrD (34) P=po+ epy+ €pot---. (41)

Ip
ax?’
. o . ~ This assumption turns E@3) into a set of equations
wherew is the driving frequency ane<F in our case. This
equation implies that we have careful control of the driving

phase, and when escape takes place, the next random walker

Dpo,,—FoPo,—Po, =0,

starts with the same initial condition as the previous one. In Dpy —FoPy — pltzsin(wt)pox,
other words, we reset to a known phase for each escape
process. In practice, an observer does not have control of the Dpy  —FoP2, — Pz =sin(wt)py -- -, (42

phase. Another diffusion process starts being recorded where
the earlier random walker left off in the phase. It is best to
phase average the solution to obtain meaningful statistics .01
For instance, a driven escape process out of a double wel
with proper phase averaging was studieddh To simplify

matters, we reset the initial phase for every ensemble sample0.008}

i.e., ¢0:0
With this additional time-dependent partesin(wt+ ¢,),

differential equations for,, for the direct time-dependent

method are given as
(1) = — A pmam(t) — e sinwt)
b Fox
x2, f qs;n(x)exp( - %) dyn(x)dx  (35)
and

< ~ ~ b_
am(t):_)\mam(t)_; Ja ¢r,n(x,f’;t)

f'x\ -, ) df’
X ex D g ph(X,f ;t)dxm, (36)
for the quasiadiabatic method, where

f'=—Fp—esin(wt+ ¢yp), (37

df’
o= @ coswt. (38

—
=
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FIG. 1. The escape time distribution with a sinusodial load is
plotted up to ten driving period®=0.6,F,=0.1,a=0,L=9, €
=0.03,w=0.1. The noisy line is the numerical simulation of*10
ensembles and the solid lines are from three analytical results. The
dashed curvéhigher ongis from the perturbative method; the solid
ones(lower curves (they overlap each otheare results from the
nonperturbative methods. We used up\tg ¢, for nonperturbative
methods, which was sufficient since thg are separated enough,
and we calculated the first order correctiofe) for the perturba-
tive method. The next higher one does not show much improve-
ment.
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where subscripts denote partial derivatives. Each equation i0.26 T T y y y
in €2, €, € order, respectively. We assume a general solu-
tion
02
pi= 2 @ (1) (). 43y <
0.15
The right-hand side of Eq42) can be rewritten as >
<
0.1 -
sin(wt)pox:; CreXp( — A pt)Sin(wt) dypn(X)
0.05¢ .
=2 Ba(D)Bn(X), (44)
- N B S —
where c'0 10 20 30 40 50 60
t (time)
Br(H) =2 CoeXp( — At SIN@t)(hn(X), dx (X)) 05
(45 (b)
For first order, we obtain for(M)(t) < ot
ey
t s
aB(t)= —exp(—xnt)f exp(—\t) e
° 0.5}

X D, CreXpl — A pit)Sin wt)

X{pn(X),dxPm(X))dt. (46) -1}

With this obtained result gb;, we can substitute the solution
p; in Eq. (42) and repeat the same procedure for equations ol _1.50

100 200 300 t (tin?gP 500 600

0.03

FIG. 3. (a) The first two quasiadiabatic eigenvalue curves in
time (for one periog. The parameters ar®=0.6,F;=0.3,a
=0,L=9, e=0.15,w=0.1. The dotted lines are from thex2
matrix approximation from Eq(40), and the solid line is from
directly solving Eq.(30). The levels get close to each other when
the periodic driving becomes less retardifiy. The amplitudes for
the first two levels from the direct time-dependent method are
shown.a,(t) (lower ong shows an abrupt change in val(gestep-
like shape in every period when the quasiadiabatic levels approach
each other the closest. This change is reflected in the escape time
distribution.

higher orders until the solution converges. When the ampli-
tude is small enough, the result works well, even in first
order.

0 100 200 300 400 500 600
t (time)
V. NUMERICAL RESULTS

FIG. 2. The escape time distribution with a sinusodial load is . . . .
plotted for up to ten driving periodsD=0.6,F,=0.1,a=0, L In numerical simulations, we used a Box-Néuw algo-

=9, e=0.3, w=0.1. The noisy line is the numerical simulation of rithm for a Gaussian stochastic force and used a Monte Carlo
10* ensembles and the solid lines are from nonperturbative methmethod with 16 ensembles. In Fig. 1 we show the escape
ods. The dotted line is from the perturbative method. Here note thdime distribution forD=0.6F;=0.1a=0L=9,6=0.03w
e>F,. We used five eigenvalues and eigenfunctions for the expan=0.1. The numerical simulation was compared with the di-
sion for the direct time-dependent and quasiadiabatic method, antct time-dependent method, the quasiadiabatic method, and
used the first order correction for the perturbative method. the perturbative method, respectively. Theare well sepa-
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rated in terms of the time scale, and we used only the firstixed eigenfunctions of the FP operator, and in the other, the
two eigenvalues and eigenfunctions for the backward FP opeigenfuctions change in time. The quasiadiabatic eigenvalue
erator. In this casgFy|=¢€, and all three methods compare spectrum levels show the dynamics of the system. When the
relatively well with the simulation. In Fig. 2 we show the two levels closely approach each other, the escape rate is
escape time distribution foD=0.6F;,=0.1a=0L=09,¢ more pronounced. This behavior is very similar to the quan-
=0.09w=0.1. € is comparable in magnitude 6, and the tum systems where the two adiabatic eigenvalue levels show
nonperturbative methods show a far better result compareabrupt level mixings.

to the perturbative method. In Fig(e3 we show the first two We derived a set of ordinary differential equations for the
adiabatic eigenvalue levels in time for a period which wastime-dependent amplitudes for the fixed or moving eigen-
calculated directly from Eq(30) and the two level approxi- functions. Both methods using fixed and moving eigenfunc-
mation from Eq. (40) for D=0.6F;=0.1a=0,L=13¢ tions are compared with the numerical simulations. We show
=0.2w=0.1. When the two levels approach each other, weghe validity of these methods when the time-dependent pa-
see the increased escape rédepeak in the escape rate rameter is comparable in magnitude to other parameters for
around the time. This is also when the load becomes leaghe system. We find these methods far better than the pertur-
retarding. The quasispectrum gives us an idea of how thbative one. If the particle is in a nonlinear potential, these
escape rate changes according as the time-dependent forcingthods will provide good insight for the escape rate.
changes. In Fig. ®) we plot the first two amplitudes, i.e., Prediction of rate processes is traditionally given by the
a4 (1),a,(t) in the direct time-dependent picture. Their rate inverse of the first eigenvalue of the Fokker-Plank operator.
of change affects directly the rate of escape process. We sdhen the time-dependent driving term is introduced, it is
an abrupt change in value at every period of the fordimg desirable to find how this eigenvalue will be modified by this
steplike behaviorin a,(t), when the quasiadiabatic levels perturbation. This analytical approach also gives an insight

approach each other. into the evolution of time-dependent amplitudes which are
closely related to the escape rates. They cannot be separately
VI. CONCLUSION obtained from the numerics.

We find this method quite effective since it converts the

We considered a noisy particle moving under carrying artial differential equation to a set of ordinary equations.
time varying load on a 1D segment. The time varying load inwhen the time scale becomes long or the amplitude becomes
this case is periodic in time. We used one absorbing conditarge, the numerical method should consider an adjustable

tion and one reflecting condition and measured the escapgid size. In this method this consideration is not necessary.
time when the particle approaches the absorbing boundary

condition once it start at the reflecting position. The load acts
against the motion of the random walker. The escape time
distribution was solved using the backward Fokker-Planck M.H.C thanks Markus De Shon for reviewing the manu-
equation and was compared with numerical simulations.  script along with valuable comments. The work was sup-

We discussed two nonperturbative methods for solvingported by National Science Foundation Grant No. PHYS-
the FP equation. In one case, the solution is expanded in tH#819646.
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