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Evolution of escape processes with a time-varying load

Mee H. Choi and Ronald F. Fox
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 29 March 2002; published 11 September 2002!

We study an escape process of a noisy particle with a time varying load. We present an effective nonper-
turbative method which works even when the time varying load amplitude is comparable to other parameters.
It is based on the idea that for every instant of time, we know thequasiadiabaticeigenspectrum and the
quasiadiabatic eigenfunctions of the instantaneous system. We show that when two time-varying quasiadiabatic
eigenvalues in the spectrum get close to each other, the amplitudes of the quasiadiabatic eigenfuntions show an
abrupt change; therefore, the escape rate is highly affected.
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I. INTRODUCTION

Escape phenomena from a given prescribed potentia
between stable states induced by intrinsic or external fluc
tions have been well studied using stochastic proces
Kramers’ original work shows a characteristic time scale
transition between two stable states@1–3#. It is the strength
of fluctuation and the shape of the potential which determ
the escape rate.

If the escape process involves a time-dependent poten
the escape rate will be affected by the time-dependent po
tial along with the fluctuation strength. In this paper we co
sider a random walker in a time-dependent potential o
one-dimensional line (a,L). The Langevin equation in the
overdamped case is

ẋ52
]U~x,t !

]x
1g~ t !, ~1!

whereF(t)52]U(x,t)/]x is a time varying force, andg is
a Gaussian white fluctuation force.g has a zero mean an
correlation strengthD,

^g~ t !&50,

^g~ t !g~ t8!&52Dd~ t2t8!. ~2!

The Fokker-Planck~FP! equation for the probability den
sity of the particle, which is a description equivalent to t
Langevin equation, can be written

]p~x,t !

]t
52

]@F~x,t !p~x,t !#

]x
1D

]2p~x,t !

]x2
. ~3!

We also defineLF as the forward Fokker-Planck operat
such that

LF5D
]

]x2
2

]@F~x,t !#

]x
,

]p~x,t !

]t
5LFp~x,t !. ~4!
1063-651X/2002/66~3!/031103~6!/$20.00 66 0311
or
a-
s.
f

e

al,
n-
-
a

Our specific problem here is a random walker carrying
time-dependent load. We are interested in the escape tim
the walker to reach the pointx5L when it starts its motion a
x5a. Therefore, we have one reflecting boundary condit
at x5a, and one absorbing boundary condition atx5L. The
load acts as a retarding force against the motion toward
absorbing boundary.

In the case where the load is constant in time, i.e.,F(t)
5F0 , this model has been used recently to understand
motion of the kinesin molecule moving on a microtubule@4#.
Kinesin acts as a kind of biological motor, and this mod
can explain the speed of the motor motion as a function
load. The escape time distribution for the motor to move
discrete step was expressed as a superposition of eigen
tions and eigenvalues of the backward Fokker-Planck op
tor. The escape time distribution combined with vario
chemical reaction rates gives an overall velocity of the m
tor. We found out that the time scale of the diffusive ter
from the load is well separated from the time scale from
fluctuations.

If the load depends on time, it necessarily introduces
other time scale, such as the period of sinusoidal drivi
decaying rate of load, etc. These rates affect the escape r
The analytic solution for the time-dependent escape proc
is hard to obtain, and the perturbative method would
available only when the amplitude of time varying para
eters are small enough compared to other exisiting ones
this paper we present a nonperturbative method when
instantaneous eigenvalues~quasiadiabatic eigenvalues! of
the Fokker-Planck operator at every instant of time
known. This method was originally conceived to solve tim
dependent problems in quantum systems, where the
varying quasiadiabatic eigenvalue spectrum of the Ham
tonian shows nontrivial behavior@5#. For a frozen value of
the external potential, the Hamiltonian has an adiabatic sp
trum parametrized by the frozen external potential. Wh
two levels in the eigenvalue spectrum approach each o
closely~however, they never cross each other; avoided le
crossings!, the system behaves extremely nonadiabatica
with level mixings.

Even though this method was used to describe the ef
of slowly varying parameters in the quantum systems,
solution turned out to be applicable to a wide range of ti
scales. We choose a time scale for a time varying param
©2002 The American Physical Society03-1
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in such a way that the unperturbed escape rate and the
scale for a time varying parameter are in the same orde
time scales. By doing so, the interplay of these effects will
pronounced.

For escape processes, it is more convenient to use
backward FP equation

]p~x,t !

]t
5F~x,t !

]

]x
p~x,t !1D

]2p~x,t !

]x2
, ~5!

and the backward FP operator, defined as

LB5D
]2

]x2
1F~x,t !

]

]x
,

]p~x,t !

]t
5LBp~x,t !. ~6!

In Sec. II we present two methods using different rep
sentations, both giving the same solution for the FP equat
In one picture, we expand the general solution in the fix
eigenfunctions, and in the other, the general solution is
panded in the instantaneous eigenfunctions in time~quasia-
diabatic method!.

In Sec. III we show a specific example of a load, whi
varies sinusoidally in time in both pictures. We show t
time-varying quasieigenvalue spectrum. When the t
quasiadiabatic-eigenvalue levels approach each other, it
affect the evolution equation, and thus the escape rate.

In Sec. IV, we briefly show how the same problem can
treated by a perturbative method, and compare the res
with the previous methods.

In Sec. V, by comparing the previous results with nume
cal simulation, we demonstrate that when the load amplit
becomes comparable to other existing parameters, the
nonperturbative pictures show a far better result than the
turbative one.

II. DIRECT TIME-DEPENDENT PICTURE VERSUS
QUASIADIABATIC PICTURE

If the time-dependent load can be written as

F~x,t !5F01F1~x,t !, ~7!

the backward FP operator also can be split into a station
part and a time-dependent part, such that

L B
stationary5D

]2

]x2
1F0

]

]x
,

L B
time dependent5F1~x,t !

]

]x
. ~8!

If we can obtain a set of eigenvaluesl, and eigenfunctions
f to the stationary part of the backward FP operator, i.e

L B
stationaryf52lf, ~9!
03110
e
of
e

he

-
n.
d
x-

o
ill

e
lts

-
e
o
r-

ry

a general solution can be written as

p~x,t !5 (
n50

`

an~ t !fn~x!, ~10!

wherean(t) are the time-dependent coefficients. The orth
normality condition for the eigenfunctionsf(x)’s of this op-
erator is

^fn~x!,fm~x!&5E
a

b

fn~x!fm~x!v~x!dx5dnm , ~11!

wherev(x) is the weight function according to the Sturm
Liouville theory. During the evolution, we will expand th
solution in the same basis set. If we combine Eq.~10! with
Eq. ~8!, and Eq.~9!, we get

d

dt S (
n50

`

an~ t !fn~x!D 52 (
n50

`

lnan~ t !fn~x!

1F1~x,t !]x(
n50

`

an~ t !fn~x!.

~12!

Using the orthonormality from Eq.~11! and the fact that
fn(x) are not time dependent, we finally obtain a set
ordinary differential equations foram(t), i.e.,

ȧm~ t !52lmam~ t !1(
n

^fm ,F1~x,t !]xfn&an~ t !.

~13!

There is no restriction foruF1(x,t)u in terms of other param-
eters here. We call this methodthe direct time-dependen
method, and we only have to know the eigenspectrum for t
F1(x,t)50 case.

As an alternative perspective, for a given instant of tim
t5t8, the forceF(t) is given byf 8. Let us assume that with
this frozen value, we can obtain a set of eigenvalues ofl̃n
for the operator

L̃5 f 8
]

]x
1D

]

]x2
, ~14!

and we have

]p~x,t !

]t
52l̃p~x,t !. ~15!

A general solution will be written as

p~x,t !5 (
n50

`

ãn~ t !f̃n~x,t !, ~16!

where ãn(t) are the time-dependent coefficients. Note th
f̃n(x,t)5f̃n(x, f 8;t) are also time varying in time. In this
picture we expand a general solution in time varying quas
diabatic eigenfunctions, and the dynamics can be obse
3-2
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from the eigenfunctions at that instant. This picture can h
an advantage when we want to view the dynamics from
moving eigenstates. If we take the derivative of Eq.~16!, we
get

] t (
n50

ãn~ t !f̃n~x,t !5 (
n50

ȧ̃n~ t !f̃n~x,t !

1(
n

ãn~ t !] f 8f̃n~x, f 8;x!
d f8

dt
.

~17!

We call this method the quasiadiabatic method. The relati
for the amplitudes from the two different pictures are giv
as

ãm~ t !5K f̃m~x,t !U(
n

anfn~x!L ,

am~ t !5K fm~x!U(
n

ãn~ t !f̃n~x,t !L . ~18!

Since the random walker starts out atx5a, normally the
initial distribution function is sharply peaked aroundx5a,
such as a delta function. We therefore set~in the direct time-
dependent method!,

p~x,t !5 (
n50

exp~2lnt !fn~x!fn~x0!. ~19!

~A finite number of eigenfunctions with the correspondi
expansion coefficients give only an approximation.! For t
50, the above distribution reduces to

p~x,t50!5(
n

`

fn~x!fn~x0!5d~x2x0!. ~20!

The probability that the particle stays in@a,b# when the
initial distribution is d(x2x0); G(x0 ,t) is to be calculated
as

G~x0 ,t !5E
0

`

fn~x0!dx0exp~2lnt !fn~x!. ~21!

The escape rate distribution is defined as

Pv~ t !52] tG~x0 ,t !. ~22!

III. PERIODIC DRIVING

The effect of a time-dependent periodic forcing on a d
fusion process with a force-free potential in two absorb
boundary conditions was analyzed in the 1980@8#. In Ref.
@8#, a simple random walker~without any particular poten
tial! under a periodic forcing diffuses along a on
dimensional~1D! line segment. It is shown that there is
resonance frequency which minimizes the mean first pas
time ~MFPT!, and at this resonance frequency, it has a lin
dependence on the lattice sizeL.
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In this section the random walker walks along a 1D se
ment with a load~retarding force! and periodic forcing. We
have one absorbing and one reflecting boundary condit
Without a time-dependent oscillating part, the load in o
case would always act against the forward motion. With
oscillating part of the load, the load helps the motion half
the period and deters the motion the other half of the per
A similar model was used to examine the effect of the tim
varying current on the histogram of spikings in the excita
systems@6#.

We first consider a constant load2F0. The backward FP
operator is written

LBf52lf,

LB5D
]2

]x2
2F0

]

]x
. ~23!

The corresponding boundary conditions are

p~x,t !ux5L50 ~24!

for the absorbing boundary condition, and

]xp~x,t !ux5a50 ~25!

for the reflecting boundary condition. The solutionp(x,t)
will be of a form with exp(2lnt)fn(x). With the two bound-
ary conditions forx5a, x5L, eigenfunctionsfn(x) are ob-
tained such that

fn~x!5expS 2
F0x

2D Dbn~x!, ~26!

with

bn~x!5sin@kn~x2L !# for
2D

F0L
.1, ~27!

and

b1~x!5H sinh@kn~x2L !# for
2D

F0L
,1,

12
x

L
for

2D

F0L
51.

~28!

A set of kn is to be obtained from a transcendental equ
tion

tan~knL !5
2D

F0L
knL for

2D

F0L
.1 ~29!

and tanh(k1L)5(2D/F0L)k1L for (2D/F0L),1, k150 for
2D/F0L51. Eigenvaluesln satisfy the relation dependin
on the conditions

ln5
F0

2

4D
1Dkn

2 for
2D

F0L
.1, ~30!

and
3-3
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l1~x!55
F0

2

4D
2Dkn

2 for
2D

F0L
,1,

F0
2

4D
for

2D

F0L
51.

~31!

The orthonormality condition for this specific problem is

^fn~x!,fm~x!&5E
a

L

fn~x!fm~x!expS 2
F0

D
xDdx5dnm .

~32!

Here, we have the weight function

vn~x!5expS 2
F0

D
xDdx. ~33!

If we apply a periodic perturbation, the backward F
equation has an additional term such that

]p

]t
5@2F02e sin~vt1f0!#]xp1D

]p

]x2
, ~34!

wherev is the driving frequency ande!F0 in our case. This
equation implies that we have careful control of the drivi
phase, and when escape takes place, the next random w
starts with the same initial condition as the previous one
other words, we reset to a known phase for each esc
process. In practice, an observer does not have control o
phase. Another diffusion process starts being recorded w
the earlier random walker left off in the phase. It is best
phase average the solution to obtain meaningful statis
For instance, a driven escape process out of a double
with proper phase averaging was studied in@7#. To simplify
matters, we reset the initial phase for every ensemble sam
i.e., f050.

With this additional time-dependent part2esin(vt1fo),
differential equations foram for the direct time-dependen
method are given as

ȧm~ t !52lmam~ t !2e sin~vt !

3(
n
E

a

b

fm8 ~x!expS 2
F0x

D D ]xfn~x!dx ~35!

and

ȧ̃m~ t !52l̃mãm~ t !2(
n
E

a

b

f̃m8 ~x, f 8;t !

3expS 2
f 8x

D D ] f 8f̃n8~x, f 8;t !dx
d f8

dt
, ~36!

for the quasiadiabatic method, where

f 852F02e sin~vt1f0!, ~37!

d f8

dt
52ve cosvt. ~38!
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As in quantum systems@9#, we can also calculate th
quasieigenvalue spectrum as we move along time. A full
of eigenvalue levels are calculated from Eqs.~29!, ~30!. With
two levels only, say the two lowest levels, we can set u
matrix for f 85D52esin(vt) in the basis off 850

Fl12D^j1u]xj1& 2D^j1u]xj2&

2D^j2u]xj1& l22D^j2u]xj2&
G . ~39!

If we diagonalize this matrix, we obtain a quadratic equat
which will give us two quasiadiabatic eigenvalues, i.e.,

l22~l11l22D^j1u]xj1&2D^j2u]xj2&!l1~2l1

1D^j1u]xj1&!~2l21D^j2u]xj2&!

1D2^j1u]xj2&^j2u]xj1&50. ~40!

IV. ADIABATIC METHOD

A perturbative method assumes a solution

p5p01ep11e2p21•••. ~41!

This assumption turns Eq.~3! into a set of equations

Dp0xx
2F0p0x

2p0t
50,

Dp1xx
2F0p1x

2p1t
5sin~vt !p0x

,

Dp2xx
2F0p2x

2p2t
5sin~vt !p1x

•••, ~42!

FIG. 1. The escape time distribution with a sinusodial load
plotted up to ten driving periods.D50.6, F050.1, a50, L59, e
50.03,v50.1. The noisy line is the numerical simulation of 104

ensembles and the solid lines are from three analytical results.
dashed curve~higher one! is from the perturbative method; the soli
ones~lower curves! ~they overlap each other! are results from the
nonperturbative methods. We used up tol2 ,f2 for nonperturbative
methods, which was sufficient since theln are separated enough
and we calculated the first order correctionO(e) for the perturba-
tive method. The next higher one does not show much impro
ment.
3-4
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where subscripts denote partial derivatives. Each equatio
in e0, e1, e2 order, respectively. We assume a general so
tion

pi5(
n

an
( i )~ t !fn~x!. ~43!

The right-hand side of Eq.~42! can be rewritten as

sin~vt !p0x
5(

n
Cnexp~2lnt !sin~vt !]xfn~x!

5( bn~ t !fn~x!, ~44!

where

bn~ t !5( Cmexp~2lmt !sin~vt !^fn~x!,]xfm~x!&.

~45!

For first order, we obtain fora (1)(t)

an
(1)~ t !52exp~2lnt !E

0

t

exp~2lnt !

3(
m

Cmexp~2lmt !sin~vt !

3^fn~x!,]xfm~x!&dt. ~46!

With this obtained result ofp1, we can substitute the solutio
p1 in Eq. ~42! and repeat the same procedure for equation

FIG. 2. The escape time distribution with a sinusodial load
plotted for up to ten driving periods.D50.6, F050.1, a50, L
59, e50.3, v50.1. The noisy line is the numerical simulation
104 ensembles and the solid lines are from nonperturbative m
ods. The dotted line is from the perturbative method. Here note
e.F0 . We used five eigenvalues and eigenfunctions for the exp
sion for the direct time-dependent and quasiadiabatic method,
used the first order correction for the perturbative method.
03110
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higher orders until the solution converges. When the am
tude is small enough, the result works well, even in fi
order.

V. NUMERICAL RESULTS

In numerical simulations, we used a Box-Mu¨ller algo-
rithm for a Gaussian stochastic force and used a Monte C
method with 104 ensembles. In Fig. 1 we show the esca
time distribution for D50.6,F050.1,a50,L59,e50.03,v
50.1. The numerical simulation was compared with the
rect time-dependent method, the quasiadiabatic method,
the perturbative method, respectively. Theln are well sepa-

s

h-
at
n-
nd

FIG. 3. ~a! The first two quasiadiabatic eigenvalue curves
time ~for one period!. The parameters areD50.6, F050.3, a
50, L59, e50.15,v50.1. The dotted lines are from the 232
matrix approximation from Eq.~40!, and the solid line is from
directly solving Eq.~30!. The levels get close to each other whe
the periodic driving becomes less retarding.~b! The amplitudes for
the first two levels from the direct time-dependent method
shown.a1(t) ~lower one! shows an abrupt change in value~a step-
like shape! in every period when the quasiadiabatic levels appro
each other the closest. This change is reflected in the escape
distribution.
3-5
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rated in terms of the time scale, and we used only the
two eigenvalues and eigenfunctions for the backward FP
erator. In this case,uF0u>e, and all three methods compa
relatively well with the simulation. In Fig. 2 we show th
escape time distribution forD50.6,F050.1,a50,L59,e
50.09,v50.1. e is comparable in magnitude toF0 and the
nonperturbative methods show a far better result compa
to the perturbative method. In Fig. 3~a! we show the first two
adiabatic eigenvalue levels in time for a period which w
calculated directly from Eq.~30! and the two level approxi-
mation from Eq. ~40! for D50.6,F050.1,a50,L513,e
50.2,v50.1. When the two levels approach each other,
see the increased escape rate~a peak in the escape rate!
around the time. This is also when the load becomes l
retarding. The quasispectrum gives us an idea of how
escape rate changes according as the time-dependent fo
changes. In Fig. 3~b! we plot the first two amplitudes, i.e
a1(t),a2(t) in the direct time-dependent picture. Their ra
of change affects directly the rate of escape process. We
an abrupt change in value at every period of the forcing~a
steplike behavior! in a1(t), when the quasiadiabatic leve
approach each other.

VI. CONCLUSION

We considered a noisy particle moving under carrying
time varying load on a 1D segment. The time varying load
this case is periodic in time. We used one absorbing co
tion and one reflecting condition and measured the esc
time when the particle approaches the absorbing boun
condition once it start at the reflecting position. The load a
against the motion of the random walker. The escape t
distribution was solved using the backward Fokker-Plan
equation and was compared with numerical simulations.

We discussed two nonperturbative methods for solv
the FP equation. In one case, the solution is expanded in
03110
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fixed eigenfunctions of the FP operator, and in the other,
eigenfuctions change in time. The quasiadiabatic eigenva
spectrum levels show the dynamics of the system. When
two levels closely approach each other, the escape ra
more pronounced. This behavior is very similar to the qu
tum systems where the two adiabatic eigenvalue levels s
abrupt level mixings.

We derived a set of ordinary differential equations for t
time-dependent amplitudes for the fixed or moving eige
functions. Both methods using fixed and moving eigenfu
tions are compared with the numerical simulations. We sh
the validity of these methods when the time-dependent
rameter is comparable in magnitude to other parameters
the system. We find these methods far better than the pe
bative one. If the particle is in a nonlinear potential, the
methods will provide good insight for the escape rate.

Prediction of rate processes is traditionally given by t
inverse of the first eigenvalue of the Fokker-Plank opera
When the time-dependent driving term is introduced, it
desirable to find how this eigenvalue will be modified by th
perturbation. This analytical approach also gives an insi
into the evolution of time-dependent amplitudes which a
closely related to the escape rates. They cannot be separ
obtained from the numerics.

We find this method quite effective since it converts t
partial differential equation to a set of ordinary equation
When the time scale becomes long or the amplitude beco
large, the numerical method should consider an adjusta
grid size. In this method this consideration is not necess
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